Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473166

RESUMO

This study investigated the effects of fish oil (FO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO) and lard oil (LO) on growth, immunity and muscle quality in juvenile largemouth bass. After 8 weeks, the results showed that FO and RO could increase weight gain and serum alkaline phosphatase and apelin values compared with LO (p < 0.05). Except lower crude lipid contents, higher amounts of n-3 polyunsaturated fatty acids (15.83% and 14.64%) were present in the dorsal muscle of the FO and RO groups. Meanwhile, FO and RO could heighten mRNA levels of immune defense molecules (lysozyme, hepcidin, and transforming growth factor ß1) compared with PO (p < 0.05). While SO could increase potential inflammatory risk via rising counts of white blood cells, platelets, neutrophils and monocytes, and mRNA levels of interleukins (IL-1ß, IL-8, IL-12 and IL-15), FO and RO could improve hardness, chewiness and springiness through increasing amounts of hydroxyproline, collagen and lysyl oxidase, and mRNA levels of collagen 1α2 and prolyl hydroxylase in the fish dorsal muscle. Moreover, FO and RO could improve firmness through increasing glycogen and glycogen synthase 1 levels when compared with LO (p < 0.05). Therefore, these results could provide dietary lipid source references during the feeding process of adult largemouth bass.

2.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
3.
Mol Cancer Ther ; 22(2): 215-226, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228090

RESUMO

CRISPR Cas9-based screening is a powerful approach for identifying and characterizing novel drug targets. Here, we elucidate the synthetic lethal mechanism of deubiquitinating enzyme USP1 in cancers with underlying DNA damage vulnerabilities, specifically BRCA1/2 mutant tumors and a subset of BRCA1/2 wild-type (WT) tumors. In sensitive cells, pharmacologic inhibition of USP1 leads to decreased DNA synthesis concomitant with S-phase-specific DNA damage. Genome-wide CRISPR-Cas9 screens identify RAD18 and UBE2K, which promote PCNA mono- and polyubiquitination respectively, as mediators of USP1 dependency. The accumulation of mono- and polyubiquitinated PCNA following USP1 inhibition is associated with reduced PCNA protein levels. Ectopic expression of WT or ubiquitin-dead K164R PCNA reverses USP1 inhibitor sensitivity. Our results show, for the first time, that USP1 dependency hinges on the aberrant processing of mono- and polyubiquitinated PCNA. Moreover, this mechanism of USP1 dependency extends beyond BRCA1/2 mutant tumors to selected BRCA1/2 WT cancer cell lines enriched in ovarian and lung lineages. We further show PARP and USP1 inhibition are strongly synergistic in BRCA1/2 mutant tumors. We postulate USP1 dependency unveils a previously uncharacterized vulnerability linked to posttranslational modifications of PCNA. Taken together, USP1 inhibition may represent a novel therapeutic strategy for BRCA1/2 mutant tumors and a subset of BRCA1/2 WT tumors.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/genética , Ubiquitinação , Dano ao DNA , Neoplasias/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
4.
Nat Biotechnol ; 39(1): 94-104, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32661438

RESUMO

Cas12a RNA-guided endonucleases are promising tools for multiplexed genetic perturbations because they can process multiple guide RNAs expressed as a single transcript, and subsequently cleave target DNA. However, their widespread adoption has lagged behind Cas9-based strategies due to low activity and the lack of a well-validated pooled screening toolkit. In the present study, we describe the optimization of enhanced Cas12a from Acidaminococcus (enAsCas12a) for pooled, combinatorial genetic screens in human cells. By assaying the activity of thousands of guides, we refine on-target design rules and develop a comprehensive set of off-target rules to predict and exclude promiscuous guides. We also identify 38 direct repeat variants that can substitute for the wild-type sequence. We validate our optimized AsCas12a toolkit by screening for synthetic lethalities in OVCAR8 and A375 cancer cells, discovering an interaction between MARCH5 and WSB2. Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos , Acidaminococcus/genética , Apoptose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular Tumoral , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Biblioteca Gênica , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
5.
Food Sci Nutr ; 8(6): 2827-2838, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32566200

RESUMO

Precooling and sulfur dioxide fumigation were proved as effective methods for the preservation of longan (Dimocarpus longan Lour.) fruits. However, inadequate precooling and sulfur dioxide fumigation resulted in unexpected losses and short shelf life. A L9(34) orthogonal test was conducted to screen out ideal dosage of sodium metabisulfite (factor A), precooling method (factor B), and precooling duration (factor C) to improve the storability of longan fruit stored for 48 hr at room temperature (RT) (25℃). The overall qualities of all of the treated longan fruits after a 48-hr storage (OQST) and during the 5-day shelf at 25℃ (OQSF) were better than those of the control fruits. The treated fruits showed brighter fresh color (higher L*, b*, C*, and h° values but lower a* value), higher flavonoid, and chlorophyll contents. Moreover, the SO2 residue was concentrated in pericarp but little in aril for any of the 12 treatments. The multivariate variance analysis showed that factor A was dominant to determine both of the OQST and OQSF, while factor B affected the OQST, and factor C affected the OQSF. In total, "0.22% sodium metabisulfite + 4 hr precooling + uncovered precooling" was considered to be an ideal treatment. These results would contribute to improving longan postharvest preservation technology.

6.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915228

RESUMO

The cell wall-targeting echinocandin antifungals, although potent and well tolerated, are inadequate in treating fungal infections due to their narrow spectrum of activity and their propensity to induce pathogen resistance. A promising strategy to overcome these drawbacks is to combine echinocandins with a molecule that improves their activity and also disrupts drug adaptation pathways. In this study, we show that puupehenone (PUUP), a marine-sponge-derived sesquiterpene quinone, potentiates the echinocandin drug caspofungin (CAS) in CAS-resistant fungal pathogens. We have conducted RNA sequencing (RNA-seq) analysis, followed by genetic and molecular studies, to elucidate PUUP's CAS-potentiating mechanism. We found that the combination of CAS and PUUP blocked the induction of CAS-responding genes required for the adaptation to cell wall stress through the cell wall integrity (CWI) pathway. Further analysis showed that PUUP inhibited the activation of Slt2 (Mpk1), the terminal mitogen-activated protein (MAP) kinase in this pathway. We also found that PUUP induced heat shock response genes and inhibited the activity of heat shock protein 90 (Hsp90). Molecular docking studies predicted that PUUP occupies a binding site on Hsp90 required for the interaction between Hsp90 and its cochaperone Cdc37. Thus, we show that PUUP potentiates CAS activity by a previously undescribed mechanism which involves a disruption of Hsp90 activity and the CWI pathway. Given the requirement of the Hsp90-Cdc37 complex in Slt2 activation, we suggest that inhibitors of this complex would disrupt the CWI pathway and synergize with echinocandins. Therefore, the identification of PUUP's CAS-potentiating mechanism has important implications in the development of new antifungal combination therapies.IMPORTANCE Fungal infections cause more fatalities worldwide each year than malaria or tuberculosis. Currently available antifungal drugs have various limitations, including host toxicity, narrow spectrum of activity, and pathogen resistance. Combining these drugs with small molecules that can overcome these limitations is a useful strategy for extending their clinical use. We have investigated the molecular mechanism by which a marine-derived compound potentiates the activity of the antifungal echinocandin caspofungin. Our findings revealed a mechanism, different from previously reported caspofungin potentiators, in which potentiation is achieved by the disruption of Hsp90 activity and signaling through the cell wall integrity pathway, processes that play important roles in the adaptation to caspofungin in fungal pathogens. Given the importance of stress adaptation in the development of echinocandin resistance, this work will serve as a starting point in the development of new combination therapies that will likely be more effective and less prone to pathogen resistance.


Assuntos
Caspofungina/farmacologia , Parede Celular/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Saccharomyces cerevisiae/genética , Sesquiterpenos/farmacologia , Xantonas/farmacologia , Antifúngicos/farmacologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/efeitos dos fármacos , Análise de Sequência de RNA
7.
ACS Chem Biol ; 14(1): 20-26, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30461263

RESUMO

Using a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding. Competitive photoaffinity labeling experiments demonstrated that the ATP6V0A2 subunit of the v-ATPase complex binds directly to HTP-013, and further mutagenesis library screening identified resistance-conferring mutations in ATP6V0A2. The positions of these mutations suggest the molecule binds a novel pocket within the domain of the v-ATPase complex responsible for proton translocation. While other mechanisms of v-ATPase regulation have been described, such as dissociation of the complex or inhibition by natural products including bafilomycin A1 and concanamycin, this work provides detailed insight into a distinct binding pocket within the v-ATPase complex.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Produtos Biológicos/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Células HCT116 , Células HEK293 , Humanos , Estrutura Molecular , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/química
9.
J Biol Chem ; 292(40): 16578-16593, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821607

RESUMO

Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasis-related genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.


Assuntos
Antifúngicos/farmacologia , Aporfinas/farmacologia , Candida albicans , Proteínas Fúngicas , Indenos/farmacologia , Proteínas Ferro-Enxofre , Proteínas Mitocondriais , Naftiridinas/farmacologia , Antifúngicos/química , Aporfinas/química , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estudo de Associação Genômica Ampla , Indenos/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Naftiridinas/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Saccharomyces cerevisiae
10.
Sci Rep ; 7: 42728, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205648

RESUMO

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.


Assuntos
Sistemas CRISPR-Cas , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Células Cultivadas , Inibidores Enzimáticos/química , Deleção de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Testes Farmacogenômicos/métodos
11.
Nat Commun ; 7: 12991, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694828

RESUMO

More aggressive and therapy-resistant oestrogen receptor (ER)-positive breast cancers remain a great clinical challenge. Here our integrative genomic analysis identifies tousled-like kinase 2 (TLK2) as a candidate kinase target frequently amplified in ∼10.5% of ER-positive breast tumours. The resulting overexpression of TLK2 is more significant in aggressive and advanced tumours, and correlates with worse clinical outcome regardless of endocrine therapy. Ectopic expression of TLK2 leads to enhanced aggressiveness in breast cancer cells, which may involve the EGFR/SRC/FAK signalling. Conversely, TLK2 inhibition selectively inhibits the growth of TLK2-high breast cancer cells, downregulates ERα, BCL2 and SKP2, impairs G1/S cell cycle progression, induces apoptosis and significantly improves progression-free survival in vivo. We identify two potential TLK2 inhibitors that could serve as backbones for future drug development. Together, amplification of the cell cycle kinase TLK2 presents an attractive genomic target for aggressive ER-positive breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases/metabolismo , Algoritmos , Animais , Apoptose , Neoplasias da Mama/genética , Ciclo Celular , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Amplificação de Genes , Inativação Gênica , Genoma Humano , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
12.
Nucleic Acids Res ; 44(6): 2742-53, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26801641

RESUMO

DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins.


Assuntos
Proteína Quinase CDC2/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteína Quinase CDC2/metabolismo , Cromatina/química , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Ciclina B/genética , Ciclina B/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Serina/metabolismo , Fatores de Transcrição/metabolismo
13.
Angew Chem Int Ed Engl ; 54(35): 10149-54, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26179970

RESUMO

Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1.


Assuntos
Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Myxococcales/fisiologia , Neoplasias/patologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Genômica/métodos , Humanos , Compostos Macrocíclicos/química , Estrutura Molecular , Neoplasias/tratamento farmacológico , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Proteômica/métodos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
mBio ; 6(3): e00647, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26106079

RESUMO

UNLABELLED: Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE: Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Compostos de Benzil/isolamento & purificação , Compostos de Benzil/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Esfingolipídeos/biossíntese , Animais , Antifúngicos/efeitos adversos , Antifúngicos/toxicidade , Compostos de Benzil/efeitos adversos , Compostos de Benzil/toxicidade , Candidíase/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fungos/citologia , Fungos/metabolismo , Fungos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Esfingolipídeos/antagonistas & inibidores , Resultado do Tratamento
15.
Bioorg Med Chem Lett ; 23(17): 4828-31, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891181

RESUMO

Miltefosine is an alkylphosphocholine that shows broad-spectrum in vitro antifungal activities and limited in vivo efficacy in mouse models of cryptococcosis. To further explore the potential of this class of compounds for the treatment of systemic mycoses, nine analogs (3a-3i) were synthesized by modifying the choline structural moiety and the alkyl chain length of miltefosine. In vitro testing of these compounds against the opportunistic fungal pathogens Candida albicans, Candida glabrata, Candida krusei, Aspergillus fumigatus, and Cryptococcus neoformans revealed that N-benzyl-N,N-dimethyl-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3a), N,N-dimethyl-N-(4-nitrobenzyl)-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3d), and N-(4-methoxybenzyl)-N,N-dimethyl-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3e) exhibited minimum inhibitory concentrations (MIC) of 2.5-5.0 µg/mL against all tested pathogens, when compared to miltefosine with MICs of 2.5-3.3 µg/mL. Compound 3a showed low in vitro cytotoxicity against three mammalian cell lines similar to miltefosine. In vivo testing of 3a and miltefosine against C. albicans in a mouse model of systemic infection did not demonstrate efficacy. The results of this study indicate that further investigation will be required to determine the potential usefulness of the alkylphosphocholines in the treatment of invasive fungal infections.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Fosforilcolina/análogos & derivados , Animais , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Linhagem Celular , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Humanos , Camundongos , Fosforilcolina/química , Fosforilcolina/farmacologia
16.
Cell Rep ; 3(2): 577-85, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23416056

RESUMO

Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems, such as human cell lines, will also be useful.


Assuntos
Antifúngicos/farmacologia , Resistência Microbiana a Medicamentos/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Alelos , Anfotericina B/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cicloeximida/farmacologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteolipídeos/antagonistas & inibidores , Proteolipídeos/genética , Proteolipídeos/metabolismo , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia
17.
Genome Res ; 23(2): 341-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23193179

RESUMO

Recent developments in next-generation sequencing have enabled whole-genome profiling of nucleosome organizations. Although several algorithms for inferring nucleosome position from a single experimental condition have been available, it remains a challenge to accurately define dynamic nucleosomes associated with environmental changes. Here, we report a comprehensive bioinformatics pipeline, DANPOS, explicitly designed for dynamic nucleosome analysis at single-nucleotide resolution. Using both simulated and real nucleosome data, we demonstrated that bias correction in preliminary data processing and optimal statistical testing significantly enhances the functional interpretation of dynamic nucleosomes. The single-nucleotide resolution analysis of DANPOS allows us to detect all three categories of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using a uniform statistical framework. Pathway analysis indicates that each category is involved in distinct biological functions. We also analyzed the influence of sequencing depth and suggest that even 200-fold coverage is probably not enough to identify all the dynamic nucleosomes. Finally, based on nucleosome data from the human hematopoietic stem cells (HSCs) and mouse embryonic stem cells (ESCs), we demonstrated that DANPOS is also robust in defining functional dynamic nucleosomes, not only in promoters, but also in distal regulatory regions in the mammalian genome.


Assuntos
Biologia Computacional/métodos , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Nucleossomos/metabolismo , Algoritmos , Animais , Simulação por Computador , Bases de Dados Genéticas , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Curva ROC
18.
PLoS Genet ; 8(11): e1003083, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209439

RESUMO

Chloroquine (CQ) and other quinoline-containing antimalarials are important drugs with many therapeutic benefits as well as adverse effects. However, the molecular targets underlying most such effects are largely unknown. By taking a novel functional genomics strategy, which employs a unique combination of genome-wide drug-gene synthetic lethality (DGSL), gene-gene synthetic lethality (GGSL), and dosage suppression (DS) screens in the model organism Saccharomyces cerevisiae and is thus termed SL/DS for simplicity, we found that CQ inhibits the thiamine transporters Thi7, Nrt1, and Thi72 in yeast. We first discovered a thi3Δ mutant as hypersensitive to CQ using a genome-wide DGSL analysis. Using genome-wide GGSL and DS screens, we then found that a thi7Δ mutation confers severe growth defect in the thi3Δ mutant and that THI7 overexpression suppresses CQ-hypersensitivity of this mutant. We subsequently showed that CQ inhibits the functions of Thi7 and its homologues Nrt1 and Thi72. In particular, the transporter activity of wild-type Thi7 but not a CQ-resistant mutant (Thi7(T287N)) was completely inhibited by the drug. Similar effects were also observed with other quinoline-containing antimalarials. In addition, CQ completely inhibited a human thiamine transporter (SLC19A3) expressed in yeast and significantly inhibited thiamine uptake in cultured human cell lines. Therefore, inhibition of thiamine uptake is a conserved mechanism of action of CQ. This study also demonstrated SL/DS as a uniquely effective methodology for discovering drug targets.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Proteínas de Transporte de Nucleosídeos , Proteínas de Saccharomyces cerevisiae , Tiamina/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Expressão Gênica , Genômica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Proteínas de Transporte de Nucleosídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Nature ; 489(7417): 576-80, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22960743

RESUMO

Chromosomal double-strand breaks (DSBs) are resected by 5' nucleases to form 3' single-stranded DNA substrates for binding by homologous recombination and DNA damage checkpoint proteins. Two redundant pathways of extensive resection have been described both in cells and in vitro, one relying on Exo1 exonuclease and the other on Sgs1 helicase and Dna2 nuclease. However, it remains unknown how resection proceeds within the context of chromatin, where histones and histone-bound proteins represent barriers for resection enzymes. Here we identify the yeast nucleosome-remodelling enzyme Fun30 as a factor promoting DSB end resection. Fun30 is the major nucleosome remodeller promoting extensive Exo1- and Sgs1-dependent resection of DSBs. The RSC and INO80 chromatin-remodelling complexes and Fun30 have redundant roles in resection adjacent to DSB ends. ATPase and helicase domains of Fun30, which are needed for nucleosome remodelling, are also required for resection. Fun30 is robustly recruited to DNA breaks and spreads along the DSB coincident with resection. Fun30 becomes less important for resection in the absence of the histone-bound Rad9 checkpoint adaptor protein known to block 5' strand processing and in the absence of either histone H3 K79 methylation or γ-H2A, which mediate recruitment of Rad9 (refs 9, 10). Together these data suggest that Fun30 helps to overcome the inhibitory effect of Rad9 on DNA resection.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Exodesoxirribonucleases/metabolismo , Genes Fúngicos/genética , Genoma Fúngico/genética , Histonas/metabolismo , Recombinação Homóloga , Metilação , Nucleossomos/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
20.
Mol Cell Biol ; 32(10): 1762-75, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22431520

RESUMO

The Saccharomyces cerevisiae Nrd1-Nab3 pathway directs the termination and processing of short RNA polymerase II transcripts. Despite the potential for Nrd1-Nab3 to affect the transcription of both coding and noncoding RNAs, little is known about how the Nrd1-Nab3 pathway interacts with other pathways in the cell. Here we present the results of a high-throughput synthetic lethality screen for genes that interact with NRD1 and show roles for Nrd1 in the regulation of mitochondrial abundance and cell size. We also provide genetic evidence of interactions between the Nrd1-Nab3 and Ras/protein kinase A (PKA) pathways. Whereas the Ras pathway promotes the transcription of genes involved in growth and glycolysis, the Nrd1-Nab3 pathway appears to have a novel role in the rapid suppression of some genes when cells are shifted to poor growth conditions. We report the identification of new mRNA targets of the Nrd1-Nab3 pathway that are rapidly repressed in response to glucose depletion. Glucose depletion also leads to the dephosphorylation of Nrd1 and the formation of novel nuclear speckles that contain Nrd1 and Nab3. Taken together, these results indicate a role for Nrd1-Nab3 in regulating the cellular response to nutrient availability.


Assuntos
Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...